KEMA Labs

KEMA TYPE TEST CERTIFICATE OF COMPLETE TYPE TESTS

Object	Three-core power cable		1142-20
Туре	19/33(36) kV 3x185 mm ² Cu/XLPE/SWA/PVC CABLE		
Rated voltage, U ₀ /U (I Conductor cross-secti		Conductor material Insulation material	Cu XLPE
Manufacturer	Energya Power Cable – Elsewedy Helal Industrial Zone A, 10 th of Ramadan City, Egypt ^{*)}		
Client	Energya Power Cable – Elsewedy Helal Industrial Zone A, 10 th of Ramadan City, Egypt ^{*)}		
Tested by	KEMA B.V., Klingelbeekseweg 195, Arnhem, The Netherlands		
Date of tests	5 March to 24 June 2020		

The test object, constructed in accordance with the description, drawings and photographs incorporated in this certificate has been subjected to the series of proving tests in accordance with

BS 6622: 2007

The results are shown in the record of Proving Tests and the oscillograms attached hereto. The values obtained and the general performance are considered to comply with the above Standards and to justify the ratings assigned by the manufacturer as listed on page 6.

57N

This Certificate applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the Manufacturer. *) as declared by the manufacturer

This Certificate consists of 56 pages in total.

KEMA B.V.

Bas Verhoeven Director, High-Voltage Laboratory

Arnhem, 25 June 2020

INFORMATION SHEET

KEMA Type Test Certificate

A KEMA Type Test Certificate contains a record of a series of (type) tests carried out in accordance with a recognized standard. The object tested has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by KEMA Labs. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The Certificate contains the essential drawings and a description of the object tested. A KEMA Type Test Certificate signifies that the object meets all the requirements of the named subclauses of the standard. It can be identified by gold-embossed lettering on the cover and a gold seal on its front sheet. The Certificate is applicable to the object tested only. KEMA Labs is responsible for the validity and the contents of the Certificate. The responsibility for conformity of any object having the same type references as the one tested rests with the manufacturer.

Detailed rules on types of certification are given in KEMA Labs' Certification procedure applicable to KEMA Labs.

2 KEMA Report of Performance

A KEMA Report of Performance is issued when an object has successfully completed and passed a subset (but not all) of test programmes in accordance with a recognized standard. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The report is applicable to the object tested only. A KEMA Report of Performance signifies that the object meets the requirements of the named subclauses of the standard. It can be identified by silver-embossed lettering on the cover and a silver seal on its front sheet.

The sentence on the front sheet of a KEMA Report of Performance will state that the tests have been carried out in accordance with The object has complied with the relevant requirements.

3 KEMA Test Report

A KEMA Test Report is issued in all other cases. Reasons for issuing a KEMA Test Report could be:

- Tests were performed according to the client's instructions.
- Tests were performed only partially according to the standard.
- No technical drawings were submitted for verification and/or no assessment of the condition of the object after the tests was performed.
- The object failed one or more of the performed tests.

The KEMA Test Report can be identified by the grey-embossed lettering on the cover and grey seal on its front sheet.

In case the number of tests, the test procedure and the test parameters are based on a recognized standard and related to the ratings assigned by the manufacturer, the following sentence will appear on the front sheet. The tests have been carried out in accordance with the client's instructions. Test procedure and test parameters were based on If the object does not pass the tests such behaviour will be mentioned on the front sheet. Verification of the drawings (if submitted) and assessment of the condition after the tests is only done on client's request.

When the tests, test procedure and/or test parameters are not in accordance with a recognized standard, the front sheet will state the tests have been carried out in accordance with client's instructions.

4 Official and uncontrolled test documents

The official test documents of KEMA Labs are issued in bound form. Uncontrolled copies may be provided as a digital file for convenience of reproduction by the client. The copyright has to be respected at all times.

5 Accreditation of KEMA Laboratories

The KEMA Labs are accredited in accordance with ISO/IEC 17025 by the respective national accreditation bodies. KEMA Labs Arnhem, The Netherlands, is accredited by RvA under nos. L020, L218, K006 and K009. KEMA Labs Chalfont, United States, is accredited by A2LA under no. 0553.01. KEMA Labs Prague, the Czech Republic, is accredited by CAI as testing laboratory no. 1035.

- 3 -

REVISION OVERVIEW

Rev. No	Date of issue	Reason for issue
0	25 June 2020	First issue

- 4 -

TABLE OF CONTENTS

Information sheet2		
Revision	overview	3
Table of	contents	4
1	Identification of the object tested	6
1.1	Ratings/characteristics of the object tested	6
1.2	Description of the object tested	6
1.3	Description of the object subjected to the adherence of screens test	8
1.4	List of drawings	9
2	General information	10
2.1	The tests were witnessed by	10
2.2	The tests were carried out under responsibility of	10
2.3	Measurement uncertainty	10
3	Type tests - Electrical	11
3.1	Test arrangement	11
3.1.1	Determination of the cable conductor temperature	11
3.1.2	Photograph of test set-up	12
3.2	Bending test	13
3.3	Partial discharge test	14
3.4	Tan δ in relation to voltage	15
3.5	Tan δ in relation to temperature	16
3.6	Heating cycle test including partial discharge measurements	17
3.6.1	Heating cycle test	17
3.6.2	Partial discharge tests during and after heating cycle test	18
3.7	Impulse test	22
3.8	Four-hour voltage test	25
3.9	Adherence of screens at short circuit temperature	26
3.9.1	Partial Discharge test subjected before short circuit current test	26
3.9.2	Thermal short-circuit test	27
3.9.3	Partial Discharge subjected after short-circuit current test	34
4	Type tests - Materials	35
4.1	Resistivity of semi-conducting screens	35
4.2	Tests for determining the mechanical properties of insulation before and after ageing	36
4.3	Tests for determining the mechanical properties of non-metal sheaths before and after	
	ageing	37
4.4	Additional ageing test on pieces of completed cable	38
4.5	Resistivity of semi-conducting screens after ageing	39
4.6	Loss of mass test on PVC sheaths of type 9	40

KEMA Labs

4.7	Pressure test at high temperature on insulation and non-metal sheaths	41
4.8	Test on PVC insulation and sheaths at low temperature	42
4.9	Test for resistance of PVC insulation and sheaths to cracking (heat shock test)	43
4.10	Measurement of the insulation resistance constant on PVC outer sheaths Type 9	44
4.11	Hot set test for XLPE insulation	45
4.12	Water absorption test on insulation	46
4.13	Flame spread on single cables	47
4.14	Measurement of mass of zinc coating	48
4.15	Wrapping test for galvanized steel wires	49
5	Sample tests	50
5.1	Measurement of thickness of insulation	50
5.2	Measurement of circularity of cores	50
5.3	Measurement of thickness of non-metal sheaths (including extruded separation sheaths,	
	but excluding inner coverings)	51
5.4	Measurement of armour wires	52
6	Check of cable construction	53
7	Drawing	55
8	Measurement uncertainty	56

- 5 -

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested

Rated voltage, U_0/U (U_m)	19/33 (36) kV
Rated maximum conductor temperature in normal operation	90 °C
Rated conductor cross-section	3x185 mm ²

1.2 **Description of the object tested**

Standard	BS 6622:2007	
Manufacturer	Energya Power Cables – Elsewedy Helal Industrial Zone A, 10 th of Ramadan City, Egypt	
Туре	19/33 kV 3x185 mm ² XLPE/SWA/PVC Cable	
Manufacturing year	2019	
Quantity submitted	95 m	
Rated voltage, U ₀ /U (U _m)	19/33 (36) kV	
Nominal capacitance between conductor and	0,19 μF/km	
metal screen		
No. of cores	3	
Core identification	core 1 = brown	
	core 2 = grey	
	core 3 = black	
Overall diameter	104,6 mm	
Marking on the oversheath	ENERGYA POWER CABLES-ELSEWEDY HELAL ELECTRIC	
	CABLE Cu/XLPE/SWA/PVC 33000 V BS 6622 3 X 185	
	MM2 2019 Meter marking	
	Line 2 ELECTRIC CABLE 33000 V BS 6622	
Construction	see List of drawings	
Conductor		
• material	copper	
cross-section	185 mm²	
nominal diameter	15,8 mm	
• type	compacted stranded	
• maximum conductor temperature in	90°C	
normal operation		
 presence and nature of measures to 	no	
achieve longitudinal watertightness		
Conductor screen		
• material	semi-conducting PE	
 nominal thickness 	0,5 mm	
 material designation 	known in KEMA Labs' files	
 manufacturer of the material 	known in KEMA Labs' files	

Insulation

- material XLPE nominal thickness 8 mm
- nominal inner diameter of the insulation 16,8 mm •
- nominal outer diameter of the insulation 32,8 mm •
- material designation known in KEMA Labs' files • known in KEMA Labs' files
- manufacturer of the material •

Insulation (core) screen

•	material	semi-conducting PE
•	strippable	no
•	nominal thickness	0,5 mm
•	material designation	known in KEMA Labs' files
•	manufacturer of the material	known in KEMA Labs' files

Metal screen

•	material	copper tape
•	number of wires/tapes	one tape
•	thickness and width of binder tapes	0,075 x 40 mm overlap 10% (approx.)
•	cross-sectional area	5 mm ²

Inner coverings and fillers

• material

polypropylene filler

Separation sheath

•	material	PVC
•	nominal thickness	1,48 mm (minimum)
•	manufacturer of the material	known in KEMA Labs' files

Metal armour

•	material	galvanized steel wires
•	number of wires	83
•	nominal diameter of wires	3,15 ± 5% mm
•	manufacturer of the material	known in KEMA Labs' files

yes

Oversheath

•	material	PVC type 9
•	nominal thickness	3,3 mm (minimum)
•	nominal overall diameter of the cable (D)	104,6 mm
•	material designation	known in KEMA Labs' files
•	manufacturer of the material	known in KEMA Labs' files
•	colour	black
•	graphite coating applied	no

Fire retardant (according to IEC 60332-1)

Rev.0

CCV

CCV1

247/19

dry

triple common extrusion

known in KEMA Labs' files

Industrial Zone A, 10th of Ramadan City, Egypt

Manufacturing details insulation system

- location of manufacturing •
- type of extrusion line •
- type of extrusion •
- factory identification of extrusion line •
- manufacturer of the extrusion line •
- identification of production batch •
- curing means •
- cooling means •
- water manufacturing length (where cable 300 m •
- sample for testing has been taken from) length markings on cable sample sent • to KEMA Labs begin: 069 m, end: 164 m

Description of the object subjected to the adherence of screens test 1.3

Voltage	19/33 kV
Number of cores	1
Frequency	50 Hz
Conductor:	
Material	copper
Cross-section	185 mm²
Maximum rated temperature	250 °C
Insulation material	XLPE
Metallic screen:	
Material	copper tape
Cross-section	5 mm ²
Armouring	steel wires

1.4 List of drawings

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following drawings and/or documents. KEMA Labs has verified that these drawings and/or documents adequately represent the object tested. The manufacturer is responsible for the correctness of these drawings and/or documents and the technical data presented.

The following drawings and/or documents have been included in this CertificateDrawing no./document no.RevisionCT19X503W11

2 **GENERAL INFORMATION**

2.1 The tests were witnessed by

The tests were carried out without a representative of the client present.

2.2 The tests were carried out under responsibility of

Name

A. Kumar,

Company KEMA B.V.,

H. van Zuilen,

S. van der Weiden,

D. Minkhorst

Arnhem, The Netherlands

2.3 **Measurement uncertainty**

A table with measurement uncertainties is enclosed in this Certificate. Unless otherwise stated, the measurement uncertainties of the results presented in this Certificate are as indicated in that table.

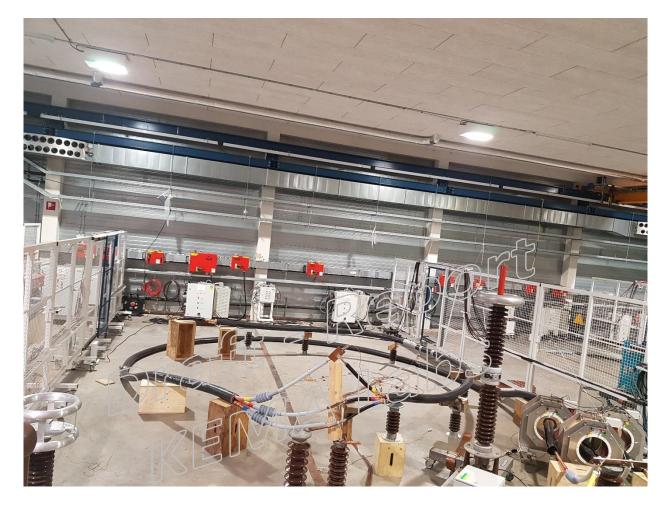
3 TYPE TESTS - ELECTRICAL

3.1 **Test arrangement**

3.1.1 Determination of the cable conductor temperature

Standard

Standard BS EN 61442


For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the test loop in order to create the same environmental conditions as for the test loop.

This reference loop was connected in series with the test loop, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. Annex G was used as a guide and Annex G, subclause G.3.1, method 1 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated limit for at least 2 hours. All three phase of both the reference loop and the test loop carried the same level three phase current. Annex A method 1 of IEC 60840 was used as a guide.

3.1.2 Photograph of test set-up

3.2 Bending test

Standard and date

BS 6622, subclause	20.3
5 March 2020	
iono	
ions	
	8 °C
ta	
bject	8 °C
ameter	12(d + D)
ed	19 m
	ions ta bject ameter

Actual external diameter of cable D	Actual diameter of cable conductor d	Maximum bending diameter D _r	Diameter of test cylinder D _t
mm	mm	mm	mm
106,5	15,8	≤ 1468	1370

Result

The test was carried out successfully.

20 °C

3.3 Partial discharge test

Standard and date

Standard	BS 6622, subclause 17.5
Test date	16 March 2020

Environmental conditions Ambient temperature

anorene	cempere	i cui c	

Characteristic test data

Temperature of test object	20 °C
Circuit	direct
Calibration	10 pC
Noise level at 2,0 U ₀	2 pC
Declared sensitivity	4 pC
Required sensitivity	\leq 10 pC
Centre frequency	2,1 MHz
Bandwidth (Δ f)	650 kHz
Test frequency	50 Hz
Coupling capacitor	2,6 nF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	kV	s	pC
1	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
2	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
3	2,25	42,8	< 60	-
	2,0	38	-	Not detectable

Note

This PD measurement also covers the PD measurement before the bending test and therefore we have omitted the PD measurement before the bending test.

Requirement

The magnitude of discharge on each core shall not exceed 10 pC at 2,0 $U_{0}.$

Result

3.4 Tan δ in relation to voltage

Standard and date

Standard	BS 6622, subclause 20.4
Test date	16 March 2020

Environmental conditions

Ambient tem	perature	20 °C

Characteristic test data

Temperature of test object	20 °C
Length of each core	16,8 m
Standard capacitor	99,918 pF

Core	Voltage ap	oplied, 50 Hz	Capacitance of core	Tan δ	maximum increase of
	x U _o	kV	μF/km		Tan δ
1	0,5	9,5	0,19	4,6x 10 ⁻⁴	1,0x 10 ⁻⁴
	1	19	0,19	5,3x 10 ⁻⁴	
	2	38	0,19	5,6x 10⁻⁴	
2	0,5	9,5	0,19	5,7x 10 ⁻⁴	2,0x 10 ⁻⁴
	1	19	0,19	6,3x 10 ⁻⁴	
	2	38	0,19	7,8x 10 ⁻⁴	
3	0,5	9,5	0,19	5,2x 10 ⁻⁴	0,4x 10 ⁻⁴
	1	19	0,19	5,4x 10 ⁻⁴	
	2	38	0,19	5,6x 10 ⁻⁴	
¹⁾ for information o	nly				

Requirement

The measured value shall not be higher than 40 x 10^{-4} at U_o. The maximum increase in tan δ from 0,5 U_o to 2 U_o shall not be higher than 20 x 10^{-4} .

Result

3.5 Tan δ in relation to temperature

Standard and date

Standard	BS 6622, subclause 20.5
Test date	18 March 2020

Environmental conditions

Ambient temperature	20 °C

Characteristic test data

Temperature of test object	97 °C
Length of test object	16,8 m
Standard capacitor	99,918 pF

Measured at ambient temperature 20°C

Core	Voltage applied, 50 Hz	Capacitance of core $^{1)}$ µF/km	Tan δ
1+2+3	5	0,19	4,1 x 10 ⁻⁴
¹⁾ for information only			

Measured at elevated temperature of 97 °C

Core	Voltage applied, 50 Hz	Capacitance of core ¹⁾	Tan δ
		μF/km	
1+2+3	5	0,18	5,5 x 10 ⁻⁴
¹⁾ for information only			

Requirement

The measured value shall not be higher than 40×10^{-4} at U_o at ambient temperature and shall not be higher than 80×10^{-4} at elevated temperature.

Result

3.6 Heating cycle test including partial discharge measurements

3.6.1 Heating cycle test

Standard and date

Standard	BS 6622, subclause 20.6
Test date	20 March to 2 April 2020

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

Heating method

conductor current

No. of	Steady	Heating	Heating cycle		
	conductor	current during	Heating		Cooling
cycles	temperature	steady condition	Total duration	Duration of conductor at steady temperature	Total duration
	°C	А	h	h	h
20	97	approx. 500	5	2	6

Requirement

The test shall be carried out successfully.

Result

3.6.2 Partial discharge tests during and after heating cycle test

3.6.2.1 Partial discharge test after cycle 5

Standard and date	
Standard	BS 6622, subclause 20.6
Test date	24 March 2020

Environmental conditions

Ambient temperature	20 °C
•	

Characteristic test data

Temperature of test object	28 °C
Circuit	direct
Calibration	10 pC
Noise level at 2,0 U_0	3 pC
Declared sensitivity	5 pC
Required sensitivity	\leq 5 pC
Centre frequency	125,5 kHz
Bandwidth (Δ f)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2,6 nF

Core	Voltage app	Voltage applied, 50 Hz		Partial discharge level
	x U ₀	kV	S	pC
1	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
2	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
3	2,25	42,8	< 60	-
	2,0	38	-	Not detectable

Requirement

The magnitude of discharge on each core shall not exceed 5 pC at 2,0 U_0 .

Result

3.6.2.2 Partial discharge test after cycle 10

Standard and date

Standard	BS 6622, subclause 20.6
Test date	27 March 2020

Environmental conditions

Ambient temperature	20 °C
Ambient temperature	20 °C

Characteristic test data

Temperature of test object	28 °C
Circuit	direct
Calibration	10 pC
Noise level at 2,0 U_0	2 pC
Declared sensitivity	4 pC
Required sensitivity	\leq 5 pC
Centre frequency	175,5 kHz
Bandwidth (∆f)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2,6 nF

Core	Voltage app	Voltage applied, 50 Hz		Partial discharge level
	x U ₀	kV	S	pC
1	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
2	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
3	2,25	42,8	< 60	-
	2,0	38	-	Not detectable

Requirement

The magnitude of discharge on each core shall not exceed 5 pC at 2,0 U_0 .

Result

3.6.2.3 Partial discharge test after cycle 15

Standard and date

Standard	BS 6622, subclause 20.6
Test date	30 March 2020

Environmental conditions

20 °C

Characteristic test data

Temperature of test object	28 °C
Circuit	direct
Calibration	10 pC
Noise level at 2,0 U ₀	2,5 pC
Declared sensitivity	5 pC
Required sensitivity	\leq 5 pC
Centre frequency	165 kHz
Bandwidth (Δ f)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2,6 nF

Core	Voltage app	Voltage applied, 50 Hz		Partial discharge level
	x U ₀	kV	S	pC
1	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
2	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
3	2,25	42,8	< 60	-
	2,0	38	-	Not detectable

Requirement

The magnitude of discharge on each core shall not exceed 5 pC at 2,0 U_0 .

Result

3.6.2.4 Partial discharge test after cycle 20

Standard and date

Standard	BS 6622, subclause 20.6
Test date	2 April 2020

Environmental conditions

Ambient temperature	20 °C
---------------------	-------

Characteristic test data

Temperature of test object	24 °C
Circuit	direct
Calibration	10 pC
Noise level at 2,0 U ₀	3 pC
Declared sensitivity	5 pC
Required sensitivity	\leq 5 pC
Centre frequency	175 kHz
Bandwidth (Δ f)	160 kHz
Test frequency	50 Hz
Coupling capacitor	2,6 nF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	kV	s	pC
1	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
2	2,25	42,8	< 60	-
	2,0	38	-	Not detectable
3	2,25	42,8	< 60	-
	2,0	38	-	Not detectable

Requirement

The magnitude of discharge on each core shall not exceed 5 pC at 2,0 U_0 .

Result

3.7 Impulse test

Standard and date

Standard	BS 6622, subclause 20.7
Test date	3 April 2020

Environmental conditions

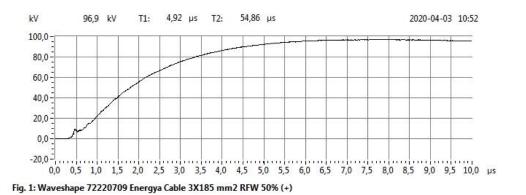
Ambient temperature	20 °C

Characteristic test data

Temperature of test object	98 °C
Specified test voltage	194 kV

Testing arrangement		Polarity	Polarity Voltage applied		See figure on next pages
Voltage applied to	Earthed		(% of test voltage)		
Conductors of all	Metal	Positive	50	1	1 (waveshape)
three cores	screens		65	1	2
			80	1	2
			100	10	3 and 4
Conductors of all	Metal	Negative	50	1	5 (waveshape)
three cores	screens		65	1	6
			80	1	6
			100	10	7 and 8

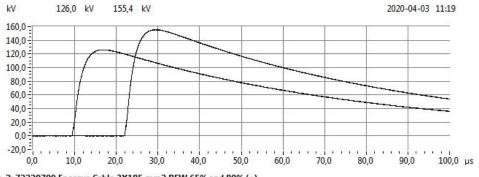
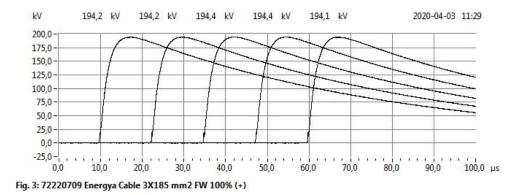
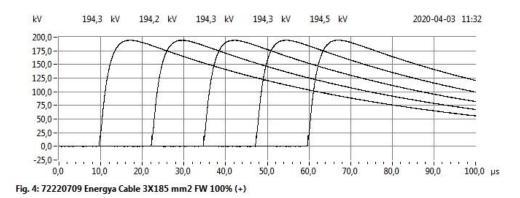
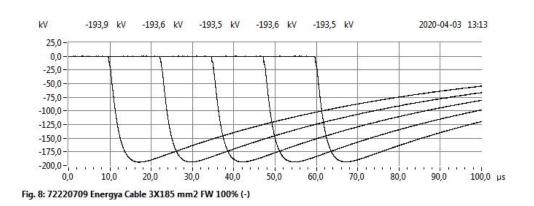
Requirement

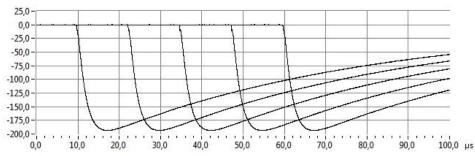

Each core of the cable shall withstand without failure 10 positive and 10 negative voltage impulses.

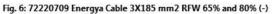
Result

- 23 -

Lightning impulse test with positive voltage

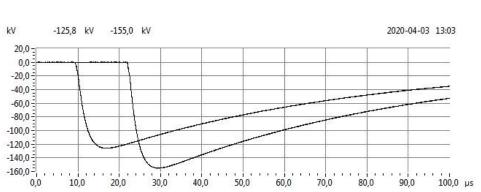

Fig. 2: 72220709 Energya Cable 3X185 mm2 RFW 65% and 80% (+)

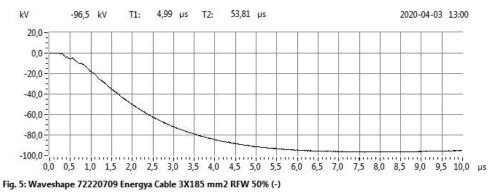


-193,4 kV

-193,4 kV

2020-04-03 13:08




-193,4 kV

-193,5 kV

-193,5 kV

kV

Lightning impulse test with negative voltage

3.8 Four-hour voltage test

Standard and date

Standard	BS 6622, clause 20.	8
Test date	4 April 2020	
Environmental condit	ions	
Ambient temperature		20 °C

Characteristic test data

Temperature of test object 20 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	kV	h
Conductors	Metal screens	4	76	4

Requirement

No breakdown of the insulation shall occur.

Result

3.9 Adherence of screens at short circuit temperature

3.9.1 Partial Discharge test subjected before short circuit current test

BS 6622, subclause 19 March 2020	2 17.5
ions	
	20 °C
a	
bject	20 °C
	direct
	10 pC
	2 pC
	4 pC
	\leq 5 pC
	400 kHz
	100 kHz
	50 Hz
	2,6 nF
	ions

Core	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	kV	s	pC
1	2,25	42,8	<60	-
	2,0	38	-	Not detectable

Requirement

The magnitude of discharge on each core shall not exceed 5 pC at 2,0 $U_{\rm 0}.$

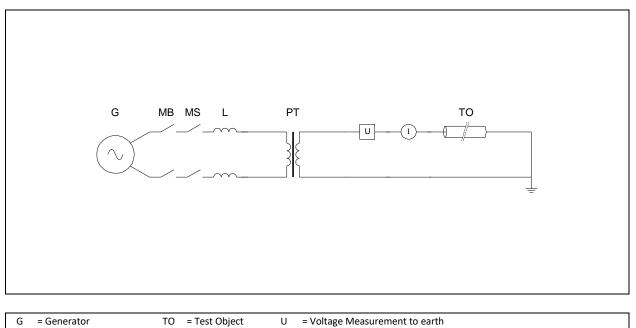
Result

3.9.2 Thermal short-circuit test

Standard and date

Standard	BS 6622:2007, subclause 20.9
Test date	27 March 2020

3.9.2.1 Condition before test


Cable previously subjected to a partial discharge test.

Measurement of resistance: at 20,8 °C: 983,6 $\mu\Omega$ at core temperature 24,8 °C: 999,1 $\mu\Omega.$

Current for 250 °C: 33,1 kA for 1 sec.

3.9.2.2 **Test circuit S01**

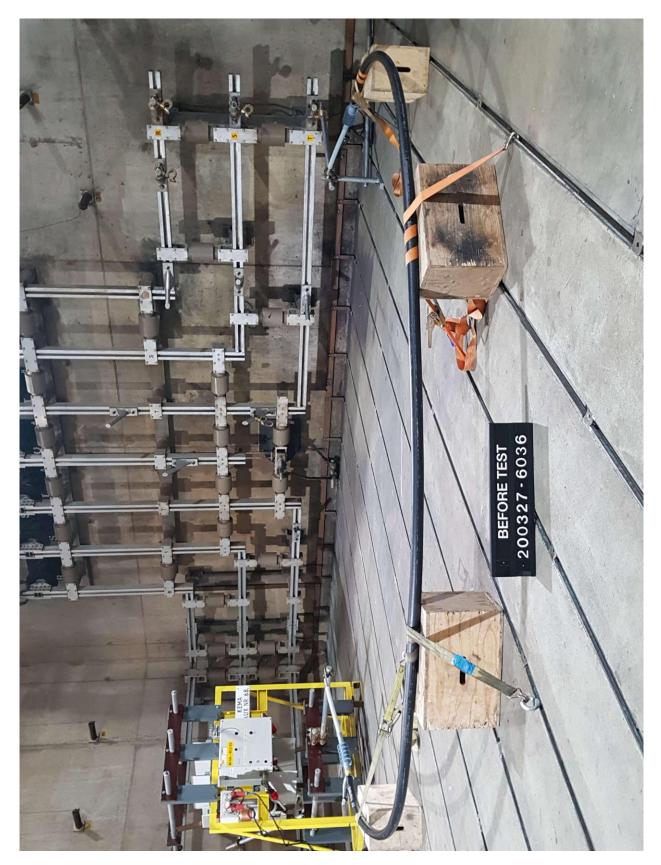
- G = Generator
- MB = Master Breaker

L = Reactor

- MS = Make Switch PT = Power Transformer

Supply			L
Power	MVA	99,6	S
Frequency	Hz	50	
Phase(s)		1	
Voltage	kV	3,01	
Current	kA	33,1	
Impedance	Ω	0,091	
Power factor		< 0,1	
Neutral		isolated	
			-

Load	
Short-circuit point	earthed


L

= Current Measurement

-

3.9.2.3 Photograph before test

3.9.2.4 Test results and oscillograms

Overview of test numbers

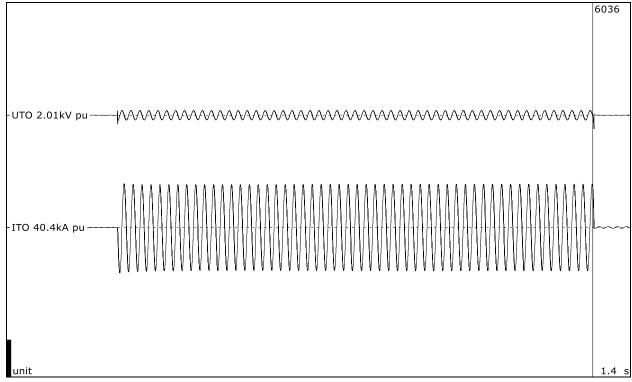
200327-6036

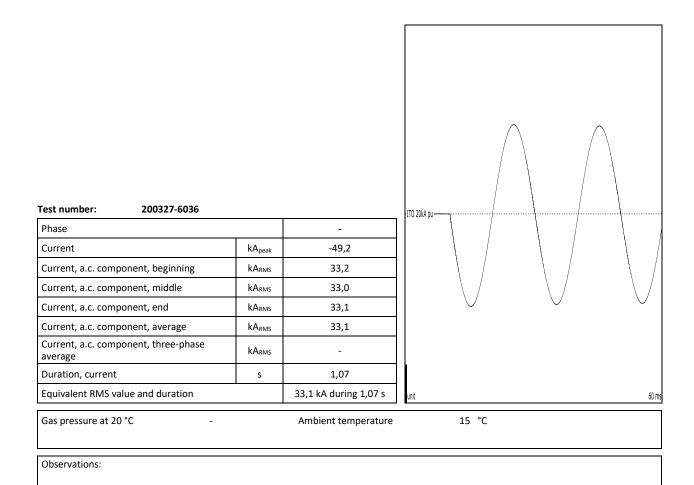
Remarks

-

Phase indications

If more than one phase is recorded on oscillogram, the phases are indicated by the digits 1, 2 and 3. These phases 1, 2 and 3 correspond to the phase values in the columns of the accompanying table, respectively from left to right.

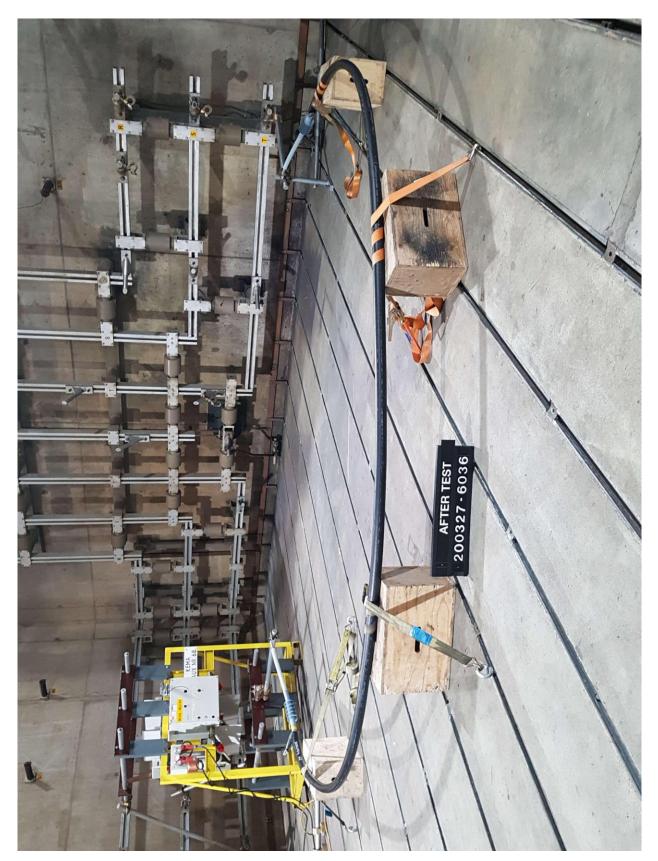

Explanation of the letter symbols and abbreviations on the oscillograms


- pu Per unit (the reference length of one unit is represented by the black bar on the oscillogram)
- ITO Current through test object
- UTO Voltage across test object

1142-20

Rev.0

3.9.2.5 Condition / inspection after test


Externally no visible change.

Measurement of resistance:

1205 $\mu\Omega$ (measured 10 minutes after test)

3.9.2.6 Photograph after test

3.9.3 Partial Discharge subjected after short-circuit current test

Standard and date Standard Test date	BS 6622, subclau 30 March 2020	ıse 17.5
	20111212020	
Environmental condit	ions	
Ambient temperature		20 °C
Characteristic test dat	a	
Temperature of test object		20 °C
Circuit		direct
Calibration		10 pC
Noise level at 2,0 U_0		3 pC
Declared sensitivity		5 pC
Required sensitivity		\leq 5 pC
Centre frequency		126,5 kHz
Bandwidth (Δ f)		100 kHz
Test frequency		50 Hz
Coupling capacitor		2,6 nF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	kV	S	pC
1	2,25	42,8	< 60	-
	2,0	38	-	Not detectable

Requirement

The magnitude of discharge on each core shall not exceed 5 pC at 2,0 U_0 .

Result

4 TYPE TESTS - MATERIALS

4.1 **Resistivity of semi-conducting screens**

Standard and date

Standard	BS 6622, subclause 19.2 and 19.4
Test date	20 April 2020

Characteristic test data

Resistivity measured at 90 ± 2 °C

Item	Unit	Requirement	Measured/determined		
			Core 1	Core 2	Core 3
Conductor screen					
without ageing	Ωm	≤ 500	172	121	232
Insulation screen					
without ageing	Ωm	≤ 500	6	4	5

Result

4.2 Tests for determining the mechanical properties of insulation before and after ageing

Standard and date

Standard	BS 6622, subclause 19.3
Test date	30 March 2020

Characteristic test data

Temperature during ageing	$135\pm3~^{\circ}\text{C}$
Ageing duration	7 x 24 h (27 March to 3 April 2020)

Item U	Unit	Requirement	Measured/determined		
			Core 1	Core 2	Core 3
Without ageing					
Tensile strength	N/mm ²	≥ 12,5	25,3	25,4	27,1
Elongation at break	%	≥ 200	546	574	571
After ageing in air oven					
Tensile strength					
• value after ageing	N/mm ²	-	31,3	29,9	30,0
variation	%	± 25 max.	24	18	11
Elongation at break					
• value after ageing	%	-	592	584	576
variation	%	± 25 max.	8	2	1

Result

4.3 Tests for determining the mechanical properties of non-metal sheaths before and after ageing

Standard and date

Standard	BS 6622, subclause 19.12
Test date	30 March 2020

Characteristic test data

Temperature during ageing	$100\pm2~^{\circ}C$
Ageing duration	7 x 24 h (27 March to 3 April 2020)

Inner sheath/Separation sheath

Item	Unit	Requirement	Measured/determined
Without ageing			
Tensile strength	N/mm ²	≥ 12,5	17,8
Elongation at break	%	≥ 150	263
After ageing in air oven			
Tensile strength			
• value after ageing	N/mm ²	≥ 12,5	17,9
variation	%	± 25 max.	1
Elongation at break			
value after ageing	%	≥ 150	262
variation	%	± 25 max.	-1

Characteristic test data

Temperature during ageing	100 ± 2 °C
Ageing duration	7 x 24 h (27 March to 3 April 2020)

Oversheath

Item	Unit	Requirement	Measured/determined
Without ageing			
Tensile strength	N/mm ²	≥ 12,5	18,6
Elongation at break	%	≥ 150	253
After ageing in air oven			
Tensile strength			
• value after ageing	N/mm ²	≥ 12,5	18,7
variation	%	± 25 max.	1
Elongation at break			
• value after ageing	%	≥ 150	231
variation	%	± 25 max.	-9

Result

4.4 Additional ageing test on pieces of completed cable

Standard and date

Standard	BS 6622, subclause 19.13
Test date	30 March 2020

Characteristic test data

Temperature during ageing	100 ± 2 °C
Ageing duration	7 x 24 h (19 to 26 March 2020)

Insulation

Item Unit	Unit	Requirement	Measured/determined			
			Core 1	Core 2	Core 3	
Without ageing						
Tensile strength	N/mm ²	≥ 12,5	25,3	25,4	27,1	
Elongation at break	%	≥ 200	546	574	571	
After ageing in air oven						
Tensile strength						
 value after ageing 	N/mm ²	-	31,5	28,7	29,8	
 variation 	%	± 25 max.	25	13	10	
Elongation at break						
• value after ageing	%	-	613	606	573	
variation	%	± 25 max.	12	6	0	
Separation sheath					·	
Item	Unit	Requirement	Measured	d/determined		
Without ageing						
Tensile strength	N/mm ²	≥ 4	17,8			
Elongation at break	%	≥ 50%	263			
After ageing in air oven						
Tensile strength						
 value after ageing 	N/mm ²	≥ 4	17,9			
Elongation at break						
 value after ageing 	%	≥ 50%	262			
Oversheath						
Item	Unit	Requirement	Measured	d/determined		
Without ageing						
Tensile strength	N/mm ²	≥ 12,5	18,6			
Elongation at break	%	≥ 150	253			
After ageing in air oven						
Tensile strength						
 value after ageing 	N/mm ²	≥ 12,5	18,2			
 variation 	%	± 25 max.	-2			
Elongation at break						
• value after ageing	%	≥ 150	297			
variation	%	± 25 max.	17			

Result

4.5 **Resistivity of semi-conducting screens after ageing**

Standard and date

Standard	BS 6622, subclause 19.13
Test date	1 May 2020

Characteristic test data

Temperature during ageing	100 °C
Duration	7 x 24 h (19 to 26 March 2020)
Resistivity measured at	90 ± 2 °C

Item	Unit	Requirement	Measured/determined		
			Core 1	Core 2	Core 3
Conductor screen					
after ageing	Ωm	≤ 1000	210	131	182
Insulation screen					
after ageing	Ωm	≤ 1000	2	2	2

Result

4.6 **Loss of mass test on PVC sheaths of type 9**

Standard and date

Standard	BS 6622, subclause 19.12
Test date	24 March to 1 April 2020

Characteristic test data

Temperature treatment	100 ± 2 °C
Duration	7 x 24 h (24 to 31 March 2020)

Inner sheath/Separation sheath

Item	Unit	Requirement	Measured/determined
Loss of mass	mg/cm ²	≤ 1,5	0,2

Oversheath

Item	Unit	Requirement	Measured/determined
Loss of mass	mg/cm ²	≤ 1,5	0,2

Result

4.7 Pressure test at high temperature on insulation and non-metal sheaths

Standard and date

Standard	BS 6622, subclause 19.12
Test date	10 April 2020

Characteristic test data

Temperature	90 ± 2 °C
Heating time	6 h
Mandrel diameter	83 mm
Load	18 N

Inner sheath/Separation sheath

Item	Unit	Requirement	Measured/determined
Depth of indentation	%	≤ 50	19

Characteristic test data

90 ± 2 °C
6 h
110 mm
23 N

Oversheath

Item	Unit	Requirement	Measured/determined
Depth of indentation	%	≤ 50	20

Result

4.8 Test on PVC insulation and sheaths at low temperature

Standard and date

Standard	BS 6622, subclause 19.12
Test date	30 April 2020

Characteristic test data

Temperature	-15 ± 2 °C
Cooling time	≥ 16 h
Mass of hammer	1500 g

Inner sheath/Separation sheath

Item	Unit	Requirement	Measured/determined
Cold elongation test	%	≥ 20	114
Cold impact test	-	No cracks	No cracks

Characteristic test data

Temperature	-15 ± 2 °C
Cooling time	≥ 16 h
Mass of hammer	1500 g

Oversheath

Item	Unit	Requirement	Measured/determined
Cold elongation test	%	≥ 20	120
Cold impact test	-	No cracks	No cracks

Result

4.9 Test for resistance of PVC insulation and sheaths to cracking (heat shock test)

Standard and date

Standard	BS 6622, subclause 19.12
Test date	16 April 2020

Characteristic test data

Temperature	150 ± 3 °C
Duration	1 h
Diameter of mandrel	8 mm
Number of turns	4

Inner sheath/Separation sheath

Item	Unit	Requirement	Measured/determined
Visual examination	-	No cracks	No cracks

Characteristic test data

Temperature	150 ± 3 °C
Duration	1 h
Diameter of mandrel	10 mm
Number of turns	2

Oversheath

Item	Unit	Requirement	Measured/determined
Visual examination	-	No cracks	No cracks

Result

4.10 Measurement of the insulation resistance constant on PVC outer sheaths Type 9

Standard and date

Standard	BS 6622, subclause 19.12.1
Test date	24 June 2020

Characteristic test data

Resistivity measured at 20 ± 5 °C

Item	Unit	Requirement	Measured/determined
Insulation resistance constant K	$M\Omega \cdot km$	>0,0035	9,12x 10 ¹⁴

Result

4.11 Hot set test for XLPE insulation

Standard and date

Standard	BS 6622, subclause 19.3
Test date	26 March 2020

Characteristic test data

Air temperature	200 ± 3 °C
Time under load	15 min
Mechanical stress	20 N/cm ²

Insulation

Item	Unit	Requirement	Measured/determined		
			Core 1	Core 2	Core 3
Elongation under load	%	≤ 175	47	46	45
Permanent elongation after cooling	%	≤ 15	-2	-1	-3

Result

4.12 Water absorption test on insulation

Standard and date

Standard	BS 6622, subclause 19.3
Test date	24 March to 13 April 2020

Characteristic test data

Temperature of water	85 ± 2 °C
Duration	14 x 24 h (27 March to 10 April 2020)
Test methode	Gravimetric

Insulation

Item	Unit	Requirement	Measured/determined		
			Core 1	Core 2	Core 3
Increase of mass	mg/cm ²	≤ 1,00	< 0,1	0,1	0,1

Result

4.13 Flame spread on single cables

Standard and date

Standard	BS 6622, subclause 19.14
Test date	21 April 2020

Characteristic test data

Overall diameter of test piece	107,3 mm
Time for flame application	480 s
Flame type	1 kW pre-mixed flame

Complete cable	Unit	Requirement	Measured/determined
The distance between the lower edge of the top support and the onset of charring	mm	≥ 50	395
The distance between the lower edge of the top support and charring extends downwards to a point	mm	≤ 540	510

Result

4.14 Measurement of mass of zinc coating

Standard and date

Standard	BS 6622, subclause 19.8
Test date	13 May 2020

Item	Unit	Requirement	Measured/determined
number of wires tested	-	-	9
Mass of zinc coating galvanized steel wires	g/m²	206	325

Result

4.15 Wrapping test for galvanized steel wires

Standard and date

Standard	BS 6622, subclause 19.9
Test date	13 May 2020

Item	Unit	Requirement	Measured/determined
number of wires tested	-	-	9
Number of turns	-	1	1
Mandrell diameter	mm	4 x diameter wire	12,7
result	-	No break of wires	No break of wires

Result

5 SAMPLE TESTS

5.1 Measurement of thickness of insulation

Standard and date

Standard	BS 6622, subclause 18.7
Test date	7 April 2020

Item	Unit	Requirement	Specified	Measured	l/determined	
				Core 1	Core 2	Core 3
Nominal	mm	8,0	8,0	-	-	-
Average	mm	-	-	9,23	9,21	9,33
Minimum [t _{min}]	mm	≥ 7,10	-	9,05	9,06	9,19
Maximum [t _{max}]	mm	-	-	9,48	9,39	9,53
$(t_{max} - t_{min}) / t_{max}$	-	≤ 0,15	-	0,05	0,03	0,04

Result

The object passed the test.

5.2 Measurement of circularity of cores

Standard and date

Standard	BS 6622, subclause 18.8
Test date	07 April 2020

Item	Unit	Requirement	Specified	Measured/determined		
				Core 1	Core 2	Core 3
Minimum [d _{min}]	mm	-	-	37,727	37,791	37,865
Maximum [d _{max}]	mm	-	-	37,839	37,928	38,033
$(d_{max} - d_{min})$	mm	≤ 0,5	-	0,1	0,1	0,2

Result

5.3 Measurement of thickness of non-metal sheaths (including extruded separation sheaths, but excluding inner coverings)

Standard and date

Standard	BS 6622, subclause 18.12 and 18.15
Test date	7 April 2020

Separation sheath

Item	Unit	Requirement	Specified	Measured/determined
Nominal	mm	≥ 1,2	2,1	-
Average	mm	-	-	3,91
Minimum	mm	≥ 1,48	-	3,18

Oversheath

Item	Unit	Requirement	Specified	Measured/determined
Nominal	mm	≥ 1,8	4,4	-
Average	mm	-	-	4,90
Minimum	mm	≥ 3,30	-	3,98

Note

The nominal thickness of the separation sheath and over sheath is calculated according to subclause 13.3.3 and Annex A.

Result

5.4 **Measurement of armour wires**

Standard and date

Standard	BS 6622, subclause 18.14
Test date	7 April 2020

Armour wires

Item	Unit	Requirement	Specified	Measured/determined
Total wires	-	-	83	85
diameter	mm	3,15 ± 5%	3,15 (nominal)	3,11 (average)
Number wires measured	-	10%	-	9
Minimum	mm	≥ 2,99	-	3,09
Maximum	mm	≤ 3,31	-	3,14

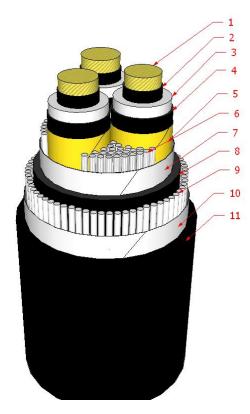
Result

6 CHECK OF CABLE CONSTRUCTION

Standard and date

Standard	BS 6622, subclauses 4 to 19
Test date	8 April 2020

Item	Unit	Requirement	ement Specified	Measured	Measured/determined		
				Core 1	Core 2	Core 3	
Conductor							
Diameter of conductor (d)	mm	$15,4 \le d \le 18,0$	15,8 ± 0,4	15,75	15,75	15,75	
Number of wires	-	≥ 30	-	37	37	37	
Diameter of wires	mm	-	-	2,45	2,45	2,45	
Resistance at 20 °C	Ω/km	≤ 0,0991	-	0,0980	0,0983	0,0982	
Water blocking yarns		-	-	no	no	no	
between conductor							
layers							
Conductor screen							
Diameter over conductor screen	mm	-	-	18,11	18,22	18,06	
Thickness	mm	-	0,5	1,09	1,16	1,07	
Insulation							
Diameter over insulation	mm	-	-	36,63	36,72	36,82	
Thickness	mm	≥ 7,10	8	9,23	9,21	9,33	
Insulation screen							
Diameter over insulation screen	mm	-	-	38,83	38,94	39,02	
Thickness	mm	-	0,5	1,05	1,07	1,06	
Metal screen							
Thickness x width of tape	mm	-	0,075 x 40	0,095 x 39,90	0,095 x 39,90	0,095 x 39,90	



Item	Unit	Requirement	Specified	Measured/determined		
Fillers						
Filler material	-	-	present	present		
Binder tape	mm	-	-	57,7 x 0,1 (approx.)		
Inner covering						
	mm	_	_	90,6		
Diameter over	111111	-	-	50,0		
covering			2.4	2.01		
Thickness	mm	-	2,1	3,91		
Steel armour wires						
Number of wires	-	-	83	85		
Thickness of wires	mm	3,15 ± 5%	3,15(nominal)	3,11 (average)		
Steel tape						
Number of tapes	-	-	1	1		
Thickness x width of	mm	-	-	0,318 x 30,13		
tape						
Binder tape						
Number of tapes	-	-	-	2		
Thickness x width of	mm	-	-	0,1 x 59,1 (approx.)		
tape						
Oversheath						
Diameter over	mm	-	104,6	107,34		
oversheath						
Thickness	mm	-	4,4	4,90		
Colour	-	-	black	black		
Marking on the cable				DY HELAL ELECTRIC CABLE		
				5 MM2 2019 Meter marking		
	Line 2: ELECTRIC CABLE 33000V BS6622					
¹⁾ Dimensional limits d	¹⁾ Dimensional limits do not have the status of a requirement but as a guideline only					

Result

7 DRAWING

	Size :	3 x 185	mm²	Туре	CU/XLPE/CT/SWA/PVC	
Vo	ltage:	19/33	kV	Standard:	BS 6622	
		Item Code : CT19	X503W1			
Sr. Description					Thickness mm	Diameter (Approx.) Mm
1.	C	ompacted Circualr C	C opper Condu	ictor		15.8 ± 0.4
2.	Inner Semi-Conductive				0.5 (Nominal)	
3.		XLPE Insu	lation		8 (Nominal)	
4.		Outer Semi-Condu	ctive (Bondeo	(k	0.5 (Nominal)	
5.	C	opper Tape Screen \	Vith 10% Ove	erlap	0.075 (Nominal)	
6.		P.P Fil	ler			
7.		Binder 1	аре			
8.		PVC Bed	ding		1.48 (Minimum)	
9.		Galvanized Steel	Wires Armou	r	3.15 ± 5%	
10.		Binder 1	аре			
11.	11. PVC Sheath				3.3 (Minimum)	
				Not to Scale		
		Prepared By			Eng. Ahmed Ad	el

8 MEASUREMENT UNCERTAINTY

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

Measurement	Measurement uncertainty		
Dielectric tests and impulse current tests:			
peak value	≤ 3%		
time parameters	≤ 10%		
Capacitance measurement	0,3%		
Tan δ measurement	± 0,5% ± 5 x 10 ⁻⁵		
Partial discharge measurement:			
< 10 pC	2 pC		
10 to 100 pC	5 pC		
> 100 pC	20%		
Measurement of impedance AC-resistance measurement	≤1%		
Measurement of losses	≤1%		
Measurement of insulation resistance	≤ 10%		
Measurement of DC resistance:			
1 to 5 μΩ	1%		
5 to 10 μΩ	0,5%		
10 to 200 μΩ	0,2%		
Radio interference test	2 dB		
Calibration of current transformers	$2,2 \times 10^{-4} I_i / I_u$ and 290 µrad		
Calibration of voltage transformers	1,6 x 10^{-4} U _i /U _u and 510 µrad		
Measurement of conductivity	5%		
Measurement of temperature:			
-50 to -40 °C	3 K		
-40 to125 °C	2 K		
125 to 150 °C	3 K		
Tensile test	1%		
Sound level measurement	type 1 meter as per IEC 60651 and ANSI S1,4,1971		
Measurement of voltage ratio	0,1%		